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Abstract

The asymptotic normality of the Maximum Likelihood Estimator (MLE) is a long estab-
lished result. Explicit bounds for the distributional distance between the distribution of the
MLE and the normal distribution have recently been obtained for the case of independent
random variables. In this paper, a local dependence structure is introduced between the
random variables and we give upper bounds which are specified for the Wasserstein metric.
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1 Introduction

The asymptotic normality of Maximum Likelihood Estimators (MLEs) was first discussed in
Fisher (1925). It is a fundamental qualitative result and a cornerstone in mathematical statistics.
The aim of assessing the quality of this normal approximation in the case of independent random
variables has recently been accomplished in Anastasiou and Reinert (2017) where the case of
single-parameter distributions has been treated and the result is so general that no restrictions on
the form of the MLE are required. Anastasiou and Ley (2017), provide an alternative approach
to the problem based partly on the Delta method for cases where the MLE can be expressed
as a function of the sum of independent terms. For such sum structures of the MLE, Pinelis
and Molzon (2016), through also a Delta method approach provide results on the closeness
of the distribution of the MLE to the normal distribution in the Kolmogorov distance under
different conditions than those used in Anastasiou and Ley (2017). Bounds related to the
normal approximation of interest for the case of high-dimensional and heterogeneous data from
multi-parameter distributions have already been obtained in Anastasiou (2016).

In this paper, the independence assumption is relaxed and we assess the normal approx-
imation of the MLE under the presence of a local dependence structure between the random
variables; for limit theorems for sums of m-dependent random variables see Heinrich (1982), Berk
(1973) and Orey (1958). For our purpose, we partly employ a powerful probabilistic technique
called Stein’s method, first introduced by Charles Stein in Stein (1972), while the monograph
Stein (1986) explains in detail the method and it is in our opinion the most notable contribution.
Stein’s method is used to assess whether a random variable, W , has a distribution close to a
target distribution. In this paper, the normal approximation related to the MLE is assessed in
terms of the Wasserstein distance. If F,G are two random variables with values in R and

HW = {h : R→ R : |h(x)− h(y)| ≤ |x− y|} (1)

is the set of Lipschitz functions with constant equal to one, then the Wasserstein distance
between the laws of F and G is

dW (F,G) = sup {|E[h(F )]− E[h(G)]| : h ∈ HW } .
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We need to mention that Berry-Esseen type bounds for the Kolmogorov distance between the
distribution of the sum of m-dependent random variables and the normal distribution are given
in Erickson (1974). However, the results of our paper, which are related to the MLE, are
much more general in the sense that they can be applied whatever the form of the MLE is (not
necessarily a sum). In addition, our results are given in terms of the aforementioned Wasserstein
distance which allows someone to obtain bounds on the Kolmogorov distance too since

dW (F,Z) ≤ 2
√
dK(F,Z)

where Z follows the standard normal distribution and dK(F,Z) is the Kolmogorov distance
between the distribution of F and the standard normal distribution. For a proof of this result
see Theorem 3.3 of Chen et al. (2011).

A general approach is first developed to get upper bounds on the Wasserstein distance
between the distribution of the suitably scaled MLE and the standard normal distribution; here
Stein’s method is used for some results. The special case of independent random variables is
briefly discussed, while an example of normally distributed locally dependent random variables
serves as an illustration of the main results.

The notion of local dependence is introduced before the Stein’s method result that is used in
the case of locally dependent random variables is given. An m-dependent sequence of random
variables {Xi, i ∈ N} is such that for each i ∈ N the sets of random variables {Xj , j ≤ i} and
{Xj , j > i+m} are independent. The Stein’s method result for the case of locally dependent
random variables is based on the local dependence condition (LD); for a set of random variables
{ξi, i = 1, 2, . . . , n}, for any A ⊂ {1, 2, . . . , n} we define

Ac = {i ∈ {1, 2, . . . , n} : i /∈ A} , ξA = {ξi : i ∈ A} .

Then,

(LD) For each i ∈ {1, 2, . . . , n} there exist Ai ⊂ Bi ⊂ {1, 2, . . . , n} such that ξi is independent
of ξAc

i
and ξAi is independent of ξBc

i
.

Whenever this condition holds,

ηi =
∑
j∈Ai

ξj , τi =
∑
j∈Bi

ξj . (2)

Lemma 1.1 below gives an upper bound on the Wasserstein distance between the distribution
of a sum of m-dependent random variables satisfying (LD) and the normal distribution. The
random variables are assumed to have mean zero with the variance of their sum being equal to
one. The proof of the lemma is beyond the scope of the paper and can be found in (Chen et al.,
2011, p.134).

Lemma 1.1. Let {ξi, i = 1, 2, . . . , n} be a set of random variables with mean zero and Var(W ) =
1, where W =

∑n
i=1 ξi. If (LD) holds, then with ηi and τi as in (2),

dW (W,Z) ≤ 2
n∑
i=1

(E|ξiηiτi|+ |E(ξiηi)|E|τi|) +
n∑
i=1

E
∣∣ξiη2

i

∣∣ . (3)

Now the notation used throughout the paper is explained. First of all, θ is a scalar unknown
parameter found in a parametric statistical model. Let θ0 be the true (still unknown) value of
the parameter θ and let Θ ⊂ R denote the parameter space, while X = (X1, X2, . . . , Xn) for
{Xi, i = 1, 2, . . . , n} an m-dependent sequence of identically distributed random variables. The
joint density function of X1, X2, . . . , Xn is

f(x|θ) = L(θ;x) = f(x1; θ)f(x2|x1; θ) . . . f(xn|xn−1, . . . , xn−m; θ)

= f(x1; θ)
n∏
i=2

f(xi|xi−1, . . . , xm∗i ; θ),
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where m∗i = max {i−m, 1}. The likelihood function is L(θ;x) = f(x|θ). Its natural logarithm,
called the log-likelihood function is denoted by l(θ;x). Derivatives of the log-likelihood function,
with respect to θ, are denoted by l′(θ;x), l′′(θ;x), . . . , l(j)(θ;x), for j any integer greater than 2.
The MLE is denoted by θ̂n(X). For many models the MLE exists and is unique; this is known as
the ‘regular’ case. For a number of statistical models, however, uniqueness or even existence of
the MLE is not secured; see Billingsley (1961) for an example of non-uniqueness. Assumptions
that ensure existence and uniqueness of the MLE are given in Mäkeläinen et al. (1981).

In Section 2 we explain, for locally dependent random variables, the process of finding an
upper bound on the Wasserstein distance between the distribution of the suitably scaled MLE
and the standard normal distribution. The quantity we are interested in is split into two terms
with the one being bounded using Stein’s method and the other using alternative techniques
based mainly on Taylor expansions. After obtaining the general upper bound, we comment
on how our bound behaves for i.i.d. (m = 0) random variables and this specific result is
compared to already existing bounds for i.i.d. random variables as given in Anastasiou and
Reinert (2017). The main result of this paper is applied in Section 3 to the case of 1-dependent
normally distributed random variables.

2 The general bound

The purpose is to obtain an upper bound on the Wasserstein distance between the distribution
of an appropriately scaled MLE and the standard normal distribution. The results of Lemma
1.1 will be applied to a sequence {ξi, i = 1, 2, . . . , n} of 2m-dependent random variables. We
denote by

M1j := max {1, j − 2m} M2j := min {n, j + 2m}
K1j := max {1, j − 4m} K2j := min {n, j + 4m} .

In addition, the dependency neighbourhoods, Aj and Bj , as defined in (LD) are

Aj = {M1j ,M1j + 1, . . . ,M2j − 1,M2j} , Bj = {K1j ,K1j + 1, . . . ,K2j − 1,K2j} . (4)

Having that ∀i ∈ {1, 2, . . . , n} , |Ai| and |Bi| denote the number of elements in the sets Ai and
Bi, respectively, then

|Ai| ≤ 4m+ 1, |Bi| ≤ 8m+ 1.

We work under the following assumptions:

(A.D.1) The log-likelihood function is three times differentiable with uniformly bounded third
derivative in θ ∈ Θ, (x1, x2, . . . , xn) ∈ S. The supremum is denoted by

Sd(n) := sup
θ∈Θ
x∈S

∣∣∣l(3)(θ;x)
∣∣∣ <∞. (5)

(A.D.2) E
[

d
dθ log f(X1|θ)

]
= E

[
d
dθ log f(Xi|Xi−1, . . . , Xi−m; θ)

]
= 0, for i = 2, 3, . . . , n.

(A.D.3) With θ0, as usual, denoting the true value of the unknown parameter,

√
nE
[
θ̂n(X)− θ0

]
−−−→
n→∞

0.

(A.D.4) The limit of the reciprocal of nVar
(
θ̂n(X)

)
exists and from now on, unless otherwise

stated,

0 < i2(θ0) = lim
n→∞

1

nVar(θ̂n(X))
.

The following theorem gives the bound.
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Theorem 2.1. Let {Xi, i = 1, 2, . . . , n} be an m-dependent sequence of identically distributed
random variables with probability density (or mass) function f(xi|xi−1, . . . , xi−m; θ), where
θ ∈ Θ and (x1, x2, . . . , xn) ∈ S, where S is the support of the joint probability density (or mass)
function. Assume that θ̂n(X) exists and is unique. In addition, assume that (A.D.1)-(A.D.4)
hold and that Var [l′(θ0;X)] > 0. Let

α := α(θ0, n) :=

√√√√Var (l′(θ0;X))

Var
(
θ̂n(X)

) , (6)

which is assumed to be finite and not equal to zero. In addition, we denote by

ξ1 =
d

dθ
log f(X1|θ)

∣∣∣
θ=θ0

√
n

Var(l′(θ0;X))

and for i = 2, 3, . . . , n,

ξi =
d

dθ
log f(Xi|Xi−1, . . . , Xi−m; θ)

∣∣∣
θ=θ0

√
n

Var(l′(θ0;X))
.

Then, for Z ∼ N(0, 1),

dW

(√
n i2(θ0)

(
θ̂n(X)− θ0

)
, Z
)
≤ 2

n
3
2

n∑
i=1

∑
j∈Ai

∑
k∈Bi

[
E
(

(ξi)
4
)

E
(

(ξj)
4
)

E
(

(ξk)
4
)] 1

4

+
2

n
3
2

n∑
i=1

∑
j∈Ai

∑
k∈Bi

[
E
(

(ξi)
2
)

E
(

(ξj)
2
)

E
(

(ξk)
2
)] 1

2
+

1

n
3
2

n∑
i=1

|Ai|
∑
j∈Ai

[
E
(

(ξi)
2
)

E
(

(ξj)
4
)] 1

2

+

∣∣∣∣∣
√
n i2(θ0)Var[l′(θ0;X)]

α
− 1

∣∣∣∣∣+
Sd(n)

√
n i2(θ0)

2α
E

[(
θ̂n(X)− θ0

)2
]

+

√
n i2(θ0)

α

√
E

[(
θ̂n(X)− θ0

)2
]√

E
[
(l′′(θ0;X) + α)2

]
. (7)

Proof. By the definition of the MLE and (A.D.1), l′
(
θ̂n(x);x

)
= 0. A second order Taylor

expansion gives that(
θ̂n(X)− θ0

)
l′′(θ0;X) = −l′(θ0;X)−R1(θ0;X)

⇒ −α
(
θ̂n(X)− θ0

)
= −l′(θ0;X)−R1(θ0;X)−

(
θ̂n(X)− θ0

) (
l′′(θ0;X) + α

)
,

where

R1(θ0;X) =
1

2

(
θ̂n(x)− θ0

)2
l(3)(θ∗;x)

is the remainder term with θ∗ lying between θ̂n(x) and θ0. Multiplying both sides by −
√
n i2(θ0)

α ,

√
n i2(θ0)

(
θ̂n(X)− θ0

)
=

√
n i2(θ0)

α

l′(θ0;X) +R1(θ0;X) +
(
θ̂n(X)− θ0

) (
l′′(θ0;X) + α

) .
(8)

Applying the triangle inequality,∣∣∣E [h(√n i2(θ0)
(
θ̂n(X)− θ0

))]
− E[h(Z)]

∣∣∣
≤

∣∣∣∣∣E
[
h

(√
n i2(θ0)l′(θ0;X)

α

)]
− E[h(Z)]

∣∣∣∣∣ (9)

+

∣∣∣∣∣E
[
h
(√

n i2(θ0)
(
θ̂n(X)− θ0

))
− h

(√
n i2(θ0)l′(θ0;X)

α

)]∣∣∣∣∣ . (10)
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Step 1: Bound for (9). Let, for ease of presentation l′(θ0;X) =
∑n

i=1 ξ̃i, where

ξ̃1 =
d

dθ
log f(X1|θ)

∣∣∣
θ=θ0

, ξ̃i =
d

dθ
log f(Xi|Xi−1, . . . , Xi−m; θ)

∣∣∣
θ=θ0

for i = 2, 3, . . . , n.

Assumption (A.D.2) ensures that ξ̃i, i = 1, 2, . . . , n have mean zero. Furthermore, for some
function g : Rm+1 → R, it holds that ξ̃i = g(Xi, Xi−1, . . . , Xi−m) and taking into account that

{Xi, i = 1, 2, . . . , n} is an m-dependent sequence, we conclude that
{
ξ̃i, i = 1, 2, . . . , n

}
forms a

2m-dependent sequence. Define now

W :=
l′(θ0;X)√

Var [l′(θ0;X)]
=

n∑
i=1

(
ξi√
n

)
, (11)

with

ξi = ξ̃i

√
n

Var [l′(θ0;X)]
, ∀i ∈ {1, 2, . . . , n} .

It follows that
{

ξi√
n
, i = 1, 2, . . . , n

}
is a random 2m-dependent sequence with mean zero and

also Var(W ) = 1. In addition, (LD) is satisfied with Aj and Bj as in (4). A simple triangle
inequality gives that

(9) ≤ |E[h(W )]− E[h(Z)]| (12)

+

∣∣∣∣∣E
[
h

(√
n i2(θ0)l′(θ0;X)

α

)
− h(W )

]∣∣∣∣∣ . (13)

Since the assumptions of Lemma 1.1 are satisfied for W as in (11), one can directly use
(3) in order to find an upper bound for (12). For (13), a first order Taylor expansion of

h

(√
n i2(θ0)l′(θ0;X)

α

)
about W yields

h

(√
n i2(θ0)l′(θ0;X)

α

)
− h

(
l′(θ0;X)√

Var(l′(θ0;X))

)

=

(√
n i2(θ0)l′(θ0;X)

α
− l′(θ0;X)√

Var(l′(θ0;X))

)
h′(t1(X)),

where t1(X) is between

√
n i2(θ0)l′(θ0;X)

α and l′(θ0;X)√
Var(l′(θ0;X))

. Therefore,

(13) ≤ ‖h′‖

∣∣∣∣∣
√
n i2(θ0)

α
− 1√

Var(l′(θ0;X))

∣∣∣∣∣E ∣∣l′(θ0;X)
∣∣ ≤ ‖h′‖ ∣∣∣∣∣

√
n i2(θ0)Var(l′(θ0;X))

α
− 1

∣∣∣∣∣ .
(14)

For h ∈ HW as in (1), then ‖h′‖ ≤ 1, which yields

(9) ≤ 2

n
3
2

[
n∑
i=1

(E|ξiηiτi|) +

n∑
i=1

(|E(ξiηi)|E|τi|)

]
+

1

n
3
2

n∑
i=1

E
∣∣ξiη2

i

∣∣
+

∣∣∣∣∣
√
n i2(θ0)Var(l′(θ0;X))

α
− 1

∣∣∣∣∣ , (15)

with ηi and τi as in (2). The absolute expectations in (15) can be difficult to bound and the first
three quantities of the above bound are therefore expressed in terms of more easily calculable
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terms. For the first term in (15), using Hölder’s inequality

E|ξiηiτi| = E

∣∣∣∣∣∣ξi
∑
j∈Ai

ξj
∑
k∈Bi

ξk

∣∣∣∣∣∣ ≤
∑
j∈Ai

∑
k∈Bi

E |ξiξjξk| ≤
∑
j∈Ai

∑
k∈Bi

[
E
(
|ξi|3

)
E
(
|ξj |3

)
E
(
|ξk|3

)] 1
3

≤
∑
j∈Ai

∑
k∈Bi

[
E
(

(ξi)
4
)

E
(

(ξj)
4
)

E
(

(ξk)
4
)] 1

4
. (16)

For the second term of the bound in (15), the Cauchy-Schwarz inequality yields

|E (ξiηi)|E |τi| =

∣∣∣∣∣∣E
ξi ∑

j∈Ai

ξj

∣∣∣∣∣∣E
∣∣∣∣∣∣
∑
k∈Bi

ξk

∣∣∣∣∣∣ ≤
∑
j∈Ai

E |ξiξj |
∑
k∈Bi

E |ξk|

≤
∑
j∈Ai

∑
k∈Bi

[
E
(

(ξi)
2
)

E
(

(ξj)
2
)

E
(

(ξk)
2
)] 1

2
. (17)

For the third term, Jensen’s inequality is employed to get that(∑
i∈J
|ai|

)z
≤ Jz−1

∑
i∈J
|ai|z, ∀ai ∈ R and z ∈ N

and therefore

E
∣∣ξiη2

i

∣∣ = E

∣∣∣∣∣∣ξi
∑
j∈Ai

ξj

2∣∣∣∣∣∣ ≤ |Ai|E
∣∣∣∣∣∣ξi
∑
j∈Ai

ξ2
j

∣∣∣∣∣∣ ≤ |Ai|
∑
j∈Ai

E
∣∣ξiξ2

j

∣∣
≤ |Ai|

∑
j∈Ai

[
E
(

(ξi)
2
)

E
(

(ξj)
4
)] 1

2
. (18)

The results in (16), (17) and (18) yield

(12) ≤ 2

n
3
2

[
n∑
i=1

(E|ξiηiτi|) +

n∑
i=1

(|E(ξiηi)|E|τi|)

]
+

1

n
3
2

n∑
i=1

E
∣∣ξiη2

i

∣∣
≤ 2

n
3
2

n∑
i=1

∑
j∈Ai

∑
k∈Bi

[
E
(

(ξi)
4
)

E
((
ξ4
j

))
E
(

(ξk)
4
)] 1

4

+
2

n
3
2

n∑
i=1

∑
j∈Ai

∑
k∈Bi

[
E
(

(ξi)
2
)

E
(

(ξj)
2
)

E
(

(ξk)
2
)] 1

2
+

1

n
3
2

n∑
i=1

|Ai|
∑
j∈Ai

[
E
(

(ξi)
2
)

E
(

(ξj)
4
)] 1

2
.

(19)

The bound for (12) is now obviously a function only of E
(
ξ2
i

)
and E

(
ξ4
i

)
.

Step 2: Bound for (10). The main tool used here is Taylor expansions. For ease of presenta-
tion, let

C̃(θ0) = C̃(h, θ0;X) := h
(√

n i2(θ0)
(
θ̂n(X)− θ0

))
− h

(√
n i2(θ0)l′(θ0;X)

α

)

= h

√n i2(θ0)
[
l′(θ0;X) +R1(θ0;X) +

(
θ̂n(X)− θ0

)
(l′′(θ0;X) + α)

]
α


− h

(√
n i2(θ0)l′(θ0;X)

α

)
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using (8). A first order Taylor expansion of h

(√
n i2(θ0)[l′(θ0;X)+R1(θ0;X)+(θ̂n(X)−θ0)(l′′(θ0;X)+α)]

α

)
about

√
n i2(θ0)l′(θ0;X)

α yields

(10) =
∣∣∣E [C̃(θ0)

]∣∣∣ ≤ √n i2(θ0)

α
‖h′‖

E

[
1

2

(
θ̂n(X)− θ0

)2 ∣∣∣l(3)(θ∗;X)
∣∣∣]

+E
∣∣∣(θ̂n(X)− θ0

) (
l′′(θ0;X) + α

)∣∣∣


≤
√
n i2(θ0)

α
‖h′‖

Sd(n)

2
E

[(
θ̂n(X)− θ0

)2
]

+

√
E

[(
θ̂n(X)− θ0

)2
]√

E
[
(l′′(θ0;X) + α)2

] ,

(20)

where for the last step Cauchy-Schwarz inequality has been used while Sd(n) is as in (5). We
conclude that (14), (19) and (20) yield, for h ∈ HW , the assertion of the theorem as expressed
in (7).

The following corollary specifies the result of Theorem 2.1 for the simple scenario of i.i.d.
random variables. This allows for a comparison with the bound given in Anastasiou and Reinert
(2017), which is for i.i.d. random variables. The proof of the corollary is a result of simple steps
and therefore only an outline is provided.

Corollary 2.1. Let X1, X2, . . . , Xn be i.i.d. random variables with probability density (or mass)
function f(x|θ). Assume that θ̂n(X) exists and is unique and that (A.D.1)-(A.D.4) hold. In
addition, Var [l′(θ0;X)] > 0. For α as in (6) and Z ∼ N(0, 1),

dW

(√
n i2(θ0)

(
θ̂n(X)− θ0

)
, Z
)
≤

5E
∣∣ d

dθ log f (X1|θ0)
∣∣3

√
n
[
Var

(
d
dθ log f (X1|θ0)

)] 3
2

+

∣∣∣∣∣∣
n
√
i2(θ0)Var

(
d
dθ log f (X1|θ0)

)
α

− 1

∣∣∣∣∣∣+
Sd(n)

√
n i2(θ0)

2α
E

[(
θ̂n(X)− θ0

)2
]

+

√
n i2(θ0)

α

√
E

[(
θ̂n(X)− θ0

)2
]√

E
[
(l′′(θ0;X) + α)2

]
. (21)

Outline of the proof . A similar process as the one followed in the proof of Theorem 2.1 shows
that a bound is obtained by bounding the terms (12), (13) and (10). For independent random
variables, applying Hölder’s inequality to the bound in (3), where now

W =
n∑
i=1

(
ξi√
n

)
, ξi =

d

dθ
log f(Xi|θ)

∣∣∣
θ=θ0

√
n

Var(l′(θ0;X))
,

leads to

(12) ≤ 5

n
3
2

n∑
i=1

E |ξi|3 =
5E
∣∣ d

dθ log f(X1|θ0)
∣∣3

√
n
[
Var

(
d
dθ log f(X1|θ0)

)] 3
2

.

The second term of the bound in (21) is the special form of (14) for the case of i.i.d. random
variables, while the last two terms are as in the result of Theorem 2.1.

Remark 2.1. The bound in (21) is not as simple and sharp as the bound given in Theorem 2.1
of Anastasiou and Reinert (2017). This is expected since Corollary 2.1 is a special application
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of a result which was originally obtained to satisfy the assumption of local dependence for our
random variables, while Anastasiou and Reinert (2017) used directly results of Stein’s method
for independent random variables. In addition, the assumption (A.D.1) used for the result of
Corollary 2.1 is stronger than the condition (R3) of Anastasiou and Reinert (2017). Using
uniform boundedness of the third derivative of the log-likelihood function in (A.D.1) allows us to
get bounds on the Wasserstein distance related to the MLE. On the other hand, Anastasiou and
Reinert (2017) relaxed this condition and assumed that the third derivative of the log-likelihood
function is bounded in an area of θ0. This lead to bounds on the bounded Wasserstein (or
Fortet-Mourier) distance; see Nourdin and Peccati (2012) for a definition of this metric.

3 Example: 1-dependent normal random variables

To illustrate the general results, as an example assume that we have a sequence {S1, S2, . . . , Sn}
of random variables where for k ∈ Z+ and ∀j ∈ {1, 2, . . . , n},

Sj =

jk∑
i=(j−1)k

Xi,

for Xi, i = 0, 1, 2, . . . , nk i.i.d. random variables from the N(µ, σ2) distribution with µ = θ ∈ R
being the unknown parameter and σ2 is known. Hence Sj and Sj+1 share one summand, Xjk.
For δ ∈ Z \ {0}, we have that

Cov(Si, Si+δ) =

{
Var(X1) = σ2, if |δ| = 1

0, if |δ| > 1.

Therefore, {Si}i=1,2,...,n is a 1-dependent sequence of random variables. Furthermore,

Si ∼ N((k + 1)θ, (k + 1)σ2) (22)

as it is a sum of k + 1 independent normally distributed random variables with mean θ and
variance σ2. As

ρ =
Cov(Si−1, Si)√

Var(Si−1)Var(Si)
=

σ2

(k + 1)σ2
=

1

k + 1
, ∀i ∈ {2, 3, . . . , n} ,

it is standard, see (Casella and Berger, 2002, p.177), that for i = 2, 3, . . . , n

(Si|Si−1 = si−1) ∼ N

(
(k + 1)θ +

1

k + 1
(si−1 − (k + 1)θ) ,

k(k + 2)

k + 1
σ2

)
. (23)

After basic steps, the likelihood function for the parameter θ under S = (S1, S2, . . . , Sn) is

L(θ;S) = f(S1|θ)
n∏
i=2

f(Si|Si−1; θ)

=
(k + 1)

n−1
2√

2π(k + 1)σ2(2πk(k + 2)σ2)
n−1
2

exp

− (S1 − (k + 1)θ)2

2(k + 1)σ2

− k + 1

2k(k + 2)σ2

n∑
i=2

(
Si −

(
(k + 1) θ +

1

k + 1
(Si−1 − (k + 1)θ)

))2
 .

Having this closed-form expression for the likelihood allows us to derive the MLE under this
local dependence structure. The unique MLE for θ is

θ̂n(S) =
k
∑n

i=1 Si + S1 + Sn
(nk + 2)(k + 1)

. (24)
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In addition, the first three derivatives of the log-likelihood function are

l′(θ;S) =
1

(k + 2)σ2

{
k

n∑
i=1

Si + S1 + Sn − (k + 1)(nk + 2)θ

}

l′′(θ;S) = −(nk + 2)(k + 1)

(k + 2)σ2

l(3)(θ;S) = 0. (25)

The following Corollary gives the upper bound on the Wasserstein distance between the distri-
bution of θ̂n(S) and the normal distribution.

Corollary 3.1. Let S1, S2, . . . Sn be a 1-dependent sequence of random variables with
Si ∼ N((k + 1)θ, (k + 1)σ2). The conditions (A.D.1)-(A.D.4) hold. For Z ∼ N(0, 1) and

i2(θ0) = (k+1)2

(k+3)σ2 ,

dW

(√
n i2(θ0)

(
θ̂n(S)− θ0

)
, Z
)
≤ 339(n− 5)

[
k(k + 1)(k + 2)

(nk3 + (3n+ 2)k2 + 10k + 2)

] 3
2

+
(k + 1)

3
2 (k + 2)

3
2

(nk3 + (3n+ 2)k2 + 10k + 2)
3
2

(1 + 3
3
4

)(
2
√
k + 2(37k + 2) + 4

√
k(61k + 8)

)

+
√

3
(

3
√
k + 2(k + 1) +

√
k(91k + 18)

)
+

∣∣∣∣∣∣
(

1− 2

nk + 2

)[
k + 3 + 2

n + 10
nk + 2

nk2

k + 3

] 1
2

− 1

∣∣∣∣∣∣ .
Remark 3.1. The order of the bound with respect to the sample size is 1√

n
.

Proof. We first check that the assumptions (A.D.1)-(A.D.4) are satisfied. The first assumption
is satisfied from (25) with Sd(n) = 0. From (22) and (23), simple steps yield E

[
d
dθ log f(S1|θ)

]
=

E
[

d
dθ log f(Si|Si−1; θ)

]
= 0 and thus (A.D.2) holds. The assumption (A.D.3) is also satisfied

since, using (22) and (24),

E
[
θ̂n(S)

]
=
nk(k + 1)θ0 + 2(k + 1)θ0

(nk + 2)(k + 1)
= θ0.

To show that (A.D.4) holds, we first calculate

Var
[
θ̂n(S)

]
=

1

(nk + 2)2(k + 1)2
Var

(
k

n∑
i=1

Si + S1 + Sn

)

=
1

(nk + 2)2(k + 1)2

k2Var

(
n∑
i=1

Si

)
+ Var(S1) + Var(Sn) + 2kCov

(
S1,

n∑
i=1

Si

)

+2kCov

(
Sn,

n∑
i=1

Si

) . (26)

From (22), Var(Si) = (k + 1)σ2, ∀i ∈ {1, 2, . . . , n}. In addition, since {Si}i=1,2,...,n is a 1-
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dependent sequence of random variables,

Var

(
n∑
i=1

Si

)
= nVar(S1) + 2(n− 1)Cov(S1, S2) = n(k + 1)σ2 + 2(n− 1)σ2

Cov

(
S1,

n∑
i=1

Si

)
= Var(S1) + Cov(S1, S2) = (k + 2)σ2. (27)

Applying the above results of (27) to (26) gives that

Var
[
θ̂n(S)

]
=
σ2
(
nk3 + 3nk2 + 2k2 + 10k + 2

)
(nk + 2)2(k + 1)2

. (28)

Therefore,

i2(θ0) = lim
n→∞

1

nVar
(
θ̂n(S)

) = lim
n→∞

(nk + 2)2(k + 1)2

nσ2(nk3 + 3nk2 + 2k2 + 10k + 2)

= lim
n→∞

n2(k + 1)2
(
k2 + 4k

n + 4
n2

)
n2σ2

(
k3 + 3k2 + 2k2

n + 10k
n + 2

n

) =
(k + 1)2

(k + 3)σ2
> 0, (29)

which shows that (A.D.4) is satisfied. To obtain α as defined in (6), the variance of the score
function is calculated which, after simple steps and using (27), is

Var
[
l′(θ0;S)

]
=

1

(k + 2)2σ2

[
nk3 + 3nk2 + 2k2 + 10k + 2

]
. (30)

The above result and (28) yield

α =

√√√√Var [l′(θ0;S)]

Var
[
θ̂n(S)

] =

√
(nk + 2)2(k + 1)2

σ4(k + 2)2
=

(nk + 2)(k + 1)

(k + 2)σ2
. (31)

For ξ1 = d
dθ log f(S1|θ)

∣∣∣
θ=θ0

√
n

Var[l′(θ0;S)] , ξi = d
dθ log f(Si|Si−1; θ)

∣∣∣
θ=θ0

√
n

Var[l′(θ0;S)] , i = 2, 3, . . . , n,

using (30) and (22), we get that

ξ1 =

√
n(k + 2)[S1 − (k + 1)θ0]

σ
√
nk3 + (3n+ 2)k2 + 10k + 2

and therefore

E
(
ξ2

1

)
=

n(k + 2)2E(S1 − (k + 1)θ)2

(nk3 + (3n+ 2)k2 + 10k + 2)σ2
=

n(k + 2)2(k + 1)

nk3 + (3n+ 2)k2 + 10k + 2

E
(
ξ4

1

)
=

n2(k + 2)4E(S1 − (k + 1)θ)4

(nk3 + (3n+ 2)k2 + 10k + 2)2σ4
=

3n2(k + 2)4(k + 1)2

(nk3 + (3n+ 2)k2 + 10k + 2)2
. (32)

Furthermore, for i = 2, 3, . . . , n, the results in (30) and (23) yield

ξi =

√
n(k + 1)

[
Si −

(
(k + 1)θ + 1

k+1 (Si−1 − (k + 1)θ)
)]

σ
√
nk3 + (3n+ 2)k2 + 10k + 2

so that

E
(
ξ2
i

)
=
n(k + 1)2E

[
Si −

(
(k + 1)θ + 1

k+1 (Si−1 − (k + 1)θ)
)]2

σ2(nk3 + (3n+ 2)k2 + 10k + 2)
=

nk(k + 1)(k + 2)

nk3 + (3n+ 2)k2 + 10k + 2

E
(
ξ4
i

)
=
n2(k + 1)4E

[
Si −

(
(k + 1)θ + 1

k+1 (Si−1 − (k + 1)θ)
)]4

σ4(nk3 + (3n+ 2)k2 + 10k + 2)2

=
3n2k2(k + 1)2(k + 2)2

(nk3 + (3n+ 2)k2 + 10k + 2)2
. (33)
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The first three terms of the general bound (7) are now calculated. These are denoted from now
on by

Qv = Qv(k, n) :=
1

n
3
2

2
∑
j∈Av

∑
l∈Bv

[
E
(

(ξv)
2
)

E
(

(ξj)
2
)

E
(

(ξl)
2
)] 1

2

+2
∑
j∈Av

∑
l∈Bv

[
E
(

(ξv)
4
)

E
(

(ξj)
4
)

E
(

(ξl)
4
)] 1

4
+ |Av|

∑
j∈Av

[
E
(

(ξv)
2
)

E
(

(ξj)
4
)] 1

2

 .

Our approach is split depending on whether 1 is an element of either Ai or Bi as defined in (4)
for i ∈ {1, 2, . . . , n}.
Case 1: i = 6, 7, . . . , n. Using the results in (33) and since |Ai| ≤ 5, |Bi| ≤ 9, ∀i ∈ {6, 7, . . . , n},

Qi ≤
1

n
3
2

90
[
E
(

(ξ2)4
)] 3

4
+ 90

[
E
(

(ξ2)2
)] 3

2
+ 25

[
E
(

(ξ2)2
)

E
(

(ξ2)4
)] 1

2


=

[
k(k + 1)(k + 2)

(nk3 + (3n+ 2)k2 + 10k + 2)

] 3
2 (

90(3)
3
4 + 90 + 25

√
3
)

< 339

[
k(k + 1)(k + 2)

(nk3 + (3n+ 2)k2 + 10k + 2)

] 3
2

. (34)

Issues arise due to ξ1 not having the same distribution as ξi for i ∈ {2, 3, . . . , n}. There are hence
five more special cases corresponding to i = 1, 2, . . . , 5. These cases are treated separately.
Case 2: i = 1. For A1 = {1, 2, 3} and B1 = {1, 2, . . . , 5}, the results in (32) and (33) yield

Q1 =
1

n
3
2

2

[[
E
(

(ξ1)2
)] 3

2
+ 6E

(
(ξ1)2

) [
E
(

(ξ2)2
)] 1

2
+ 8E

(
(ξ2)2

) [
E
(

(ξ1)2
)] 1

2

]

+2

[[
E
(

(ξ1)4
)] 3

4
+ 6

[
E
(

(ξ1)4
)] 1

2
[
E
(

(ξ2)4
)] 1

4
+ 8

[
E
(

(ξ1)4
)] 1

4
[
E
(

(ξ2)4
)] 1

2

]

+3

[[
E
(

(ξ1)2
)] 1

2

([
E
(

(ξ1)4
)] 1

2
+ 2

[
E
(

(ξ2)4
)] 1

2

)]
=

2(k + 1)
3
2 (k + 2)2

(nk3 + (3n+ 2)k2 + 10k + 2)
3
2

(9k + 2 + 6
√
k(k + 2)

)(
1 + 3

3
4

)
+ 3
√

3(k + 1)

 . (35)

Case 3: i = 2. For A2 = {1, 2, 3, 4} and B2 = {1, 2, . . . , 6}, a similar approach as the one in
Case 2 yields

Q2 =
4
√
k(k + 1)

3
2 (k + 2)

3
2

(nk3 + (3n+ 2)k2 + 10k + 2)
3
2

(8k + 1 + 4
√
k(k + 2)

)(
1 + 3

3
4

)
+ 2
√

3(2k + 1)

 .

(36)
Case 4: i = 3. Following the same steps as in Case 3, now for A3 = {1, 2, . . . , 5} and B3 =
{1, 2, . . . , 7}, the results in (32) and (33) give that

Q3 =

√
k(k + 1)

3
2 (k + 2)

3
2

(nk3 + (3n+ 2)k2 + 10k + 2)
3
2

2
(

25k + 2 + 10
√
k(k + 2)

)(
1 + 3

3
4

)
+ 5
√

3(5k + 2)

 .

(37)
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Case 5: i = 4. In this case, A4 = {2, 3, . . . , 6} , B4 = {1, 2, . . . , 8}, which lead to

Q4 =
5k(k + 1)

3
2 (k + 2)

3
2

(nk3 + (3n+ 2)k2 + 10k + 2)
3
2

{
2
[√

k + 2 + 7
√
k
] (

1 + 3
3
4

)
+ 5
√

3k
}
. (38)

Case 6: i = 5. Now A5 = {3, 4, . . . , 7} and B5 = {1, 2, . . . , 9} to obtain that

Q5 =
5k(k + 1)

3
2 (k + 2)

3
2

(nk3 + (3n+ 2)k2 + 10k + 2)
3
2

{
2
[√

k + 2 + 8
√
k
] (

1 + 3
3
4

)
+ 5
√

3k
}
. (39)

The sum of the results of (35), (36), (37), (38) and (39) with (n − 5) times the bound in (34)
consists an upper bound for the first three terms of the general upper bound as expressed in (7).
For the fourth term of the general upper bound, (29), (30) and (31) yield∣∣∣∣∣

√
n i2(θ0)Var[l′(θ0;X)]

α
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣ nk

nk + 2

[
k + 3 + 2

n + 10
nk + 2

nk2

k + 3

] 1
2

− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(

1− 2

nk + 2

)[
k + 3 + 2

n + 10
nk + 2

nk2

k + 3

] 1
2

− 1

∣∣∣∣∣∣ . (40)

The fifth term of the bound in (7) involves the calculation of Sd(n), which is equal to zero from
(25). Therefore, the fifth term of the general upper bound vanishes for this example. For the

last term we have from (25) that E [l′′(θ0;S)] = − (nk+2)(k+1)
(k+2)σ2 = −α and therefore√

E

[(
θ̂n(S)− θ0

)2
]

E
[
(l′′(θ0;S) + α)2

]
=

√
E

[(
θ̂n(S)− θ0

)2
]

Var [l′′(θ0;S)] = 0.

The results of Case 1 - Case 6 and (40) give the assertion of the corollary.

Remarks Several exciting paths lead from the work explained in this paper. Firstly, treating
the case of a vector parameter is the next reasonable step to go. Furthermore, other types of
dependence structure between the random variables (or vectors) could be investigated to get
bounds for the distributional distance of interest. In addition, our theoretical results can be
very useful when it comes to applications that satisfy the assumed dependence structure for the
data.
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